

    
      
          
            
  
flaskerize

flaskerize is a code generation and project modification command line interface (CLI) written in Python and created for Python.
It is heavily influenced by concepts and design patterns of the Angular CLI available in the popular JavaScript framework Angular.
In addition to vanilla template generation, flaskerize supports hooks for custom run methods and registration of user-provided template functions.
It was built with extensibility in mind so that you can create and distribute your own library of schematics  for just about anything.

Use flaskerize for tasks including:


	Generating resources such as Dockerfiles, new flaskerize schematics , blueprints, yaml configs, SQLAlchemy entities, or even entire applications, all with functioning tests


	Upgrading between breaking versions of projects that provide flaskerize upgrade schematics  with one command


	Bundling and serving static web applications such as Angular, React, Gatsby, Jekyll, etc within a new or existing Flask app.


	Registering Flask resources as new routes within an existing application


	Creating new schematics  for your own library or organization





Contents:


	Quick Start Guide
	Step 1: Setting up Flaskerize

	Step 2: Installing Flaskerize

	Step 3: Creating a Flask API

	Step 4: The Structure of your Flask API

	Step 5: Adding Entities to an API

	Step 6: Over To You





	Contributing to flaskerize
	Contributing to the Source Code

	Contributing to the Documentation





	Glossary of Terms







Indices and tables


	Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Quick Start Guide

This guide is designed to get you up and running by showing you how to create a new Flask API using Flaskerize.



	Step 1: Setting up Flaskerize

	Step 2: Installing Flaskerize

	Step 3: Creating a Flask API

	Step 4: The Structure of your Flask API

	Step 5: Adding Entities to an API

	Step 6: Over To You





It’s assumed that you have Python 3.7 installed. If not, go and install Python now.

https://www.python.org/downloads/

The instructions in this guide also assume you’re comfortable using the command line. The illustrations that you’ll see in this quick start are taken from a bash terminal. In general, the commands will work in your chosen terminal.

OK….let’s get started…




          

      

      

    

  

    
      
          
            
  
Step 1: Setting up Flaskerize

We’re going to start from nothing, and over the course of this quickstart we’ll end up with a simple API.

First, let’s create a folder for our Flask API to live in.

mkdir flaskerize-example
cd flaskertize-example





Now, let’s set up a virtual environment for our API project, activate it,
and then upgrade pip within that environment.

python -m venv venv
source venv/bin/activate
pip install --upgrade pip






Note

The last command, pip install --upgrade pip, ensures that we have the latest version of pip installed.






          

      

      

    

  

    
      
          
            
  
Step 2: Installing Flaskerize

We’re now ready to install Flaskeriez. Let’s use pip to do just that…

pip install flaskerize





Once this command has completed we’ll have installed Flaskerize along
with its dependencies. If you want to see the packages that were installed,
run the following command:

pip list





This should show you something like this…

$ pip list
Package      Version
------------ -------
appdirs      1.4.3
Click        7.0
Flask        1.1.1
flaskerize   0.12.0
fs           2.4.11
itsdangerous 1.1.0
Jinja2       2.10.1
MarkupSafe   1.1.1
pip          19.2.3
pytz         2019.2
setuptools   40.8.0
six          1.12.0
termcolor    1.1.0
Werkzeug     0.16.0






Note

The exact versions shown here may differ from the ones you see when you install flaskerize.



You should now have access to the fz command, verify this with fz --help, which should display something like the following:

$ fz --help
Flaskerizing...
usage: fz [-h] {attach,bundle,generate} [{attach,bundle,generate} ...]

positional arguments:
  {attach,bundle,generate}
                        Generate a new resource

optional arguments:
  -h, --help            show this help message and exit








          

      

      

    

  

    
      
          
            
  
Step 3: Creating a Flask API

You’re we’re now ready to create our Flask API, and we’re going to use flaskerize to do most of this for us.

flaskerize has a number of generators that generate code and configuration for us.
These generators use schematics to define exactly what code should be built.
There are a number of schematics build into  flaskerize.

We’re going to start by using the flask-api generator to create a simple Flask API.

From the root of your project folder, run the following command:

fz generate flask-api my_app





You’ll see output similar to the following:

$ fz generate flask-api my_app
Flaskerizing...

Flaskerize job summary:

        Schematic generation successful!
        Full schematic path: flaskerize/schematics/flask-api



        13 directories created
        40 file(s) created
        0 file(s) deleted
        0 file(s) modified
        0 file(s) unchanged

CREATED: flaskerize-example/.pytest_cache
CREATED: flaskerize-example/.pytest_cache/v
CREATED: flaskerize-example/.pytest_cache/v/cache
CREATED: flaskerize-example/my_app
CREATED: flaskerize-example/my_app/__pycache__
CREATED: flaskerize-example/my_app/app
CREATED: flaskerize-example/my_app/app/__pycache__
CREATED: flaskerize-example/my_app/app/test
CREATED: flaskerize-example/my_app/app/test/__pycache__
CREATED: flaskerize-example/my_app/app/widget
CREATED: flaskerize-example/my_app/app/widget/__pycache__
CREATED: flaskerize-example/my_app/commands
CREATED: flaskerize-example/my_app/commands/__pycache__
CREATED: .gitignore
CREATED: .pytest_cache/.gitignore
CREATED: .pytest_cache/CACHEDIR.TAG
CREATED: .pytest_cache/README.md
CREATED: .pytest_cache/v/cache/lastfailed
CREATED: .pytest_cache/v/cache/nodeids
CREATED: .pytest_cache/v/cache/stepwise
CREATED: my_app/README.md
CREATED: my_app/__pycache__/manage.cpython-37.pyc
CREATED: my_app/__pycache__/wsgi.cpython-37.pyc
CREATED: my_app/app/__init__.py
CREATED: my_app/app/__pycache__/__init__.cpython-37.pyc
CREATED: my_app/app/__pycache__/config.cpython-37.pyc
CREATED: my_app/app/__pycache__/routes.cpython-37.pyc
CREATED: my_app/app/app-test.db
CREATED: my_app/app/config.py
CREATED: my_app/app/routes.py
CREATED: my_app/app/test/__init__.py
CREATED: my_app/app/test/__pycache__/__init__.cpython-37.pyc
CREATED: my_app/app/test/__pycache__/fixtures.cpython-37.pyc
CREATED: my_app/app/test/fixtures.py
CREATED: my_app/app/widget/__init__.py
CREATED: my_app/app/widget/__pycache__/__init__.cpython-37.pyc
CREATED: my_app/app/widget/__pycache__/controller.cpython-37.pyc
CREATED: my_app/app/widget/__pycache__/interface.cpython-37.pyc
CREATED: my_app/app/widget/__pycache__/model.cpython-37.pyc
CREATED: my_app/app/widget/__pycache__/schema.cpython-37.pyc
CREATED: my_app/app/widget/__pycache__/service.cpython-37.pyc
CREATED: my_app/app/widget/controller.py
CREATED: my_app/app/widget/interface.py
CREATED: my_app/app/widget/model.py
CREATED: my_app/app/widget/schema.py
CREATED: my_app/app/widget/service.py
CREATED: my_app/commands/__init__.py
CREATED: my_app/commands/__pycache__/__init__.cpython-37.pyc
CREATED: my_app/commands/__pycache__/seed_command.cpython-37.pyc
CREATED: my_app/commands/seed_command.py
CREATED: my_app/manage.py
CREATED: my_app/requirements.txt
CREATED: my_app/wsgi.py





Navigate into the my_app directory that was just created and list the files in that directory:

$ cd my_app
$ ls -al
total 32
drwxr-xr-x  9 bob  staff   288  4 Oct 15:01 .
drwxr-xr-x  6 bob  staff   192  4 Oct 15:01 ..
-rw-r--r--  1 bob  staff  1063  4 Oct 15:01 README.md
drwxr-xr-x  4 bob  staff   128  4 Oct 15:01 __pycache__
drwxr-xr-x  9 bob  staff   288  4 Oct 15:01 app
drwxr-xr-x  5 bob  staff   160  4 Oct 15:01 commands
-rw-r--r--  1 bob  staff   673  4 Oct 15:01 manage.py
-rw-r--r--  1 bob  staff   409  4 Oct 15:01 requirements.txt
-rw-r--r--  1 bob  staff   141  4 Oct 15:01 wsgi.py





As you can see, a number of files and folders have been created.
One of the files that was just created is a README.md markdown file.
If you open that file in a text editor find instructions on settng up your API.
Those instructions are repeated here for convinience, but I’d recommend you take a look at README.md file regardless.


Following the Instructions from README.md

First, use pip install to install the requirements of your new API

pip install -r requirements.txt





Next, initialize the database

python manage.py seed_db





This step create a local SQLite database file.


Note

Type “Y” to accept the message. This check is there to prevent you accidentally deleting things.





Confirm your API is working

You’re now ready to confirm that your API is working.

You can use the Flask command line interface to confirm that your Flask API is working by first using the flask routes command.
This will print out all of the routes supported by your Flask API:

$ flask routes
Endpoint                   Methods           Rule
-------------------------  ----------------  --------------------------
Widget_widget_id_resource  DELETE, GET, PUT  /api/widget/<int:widgetId>
Widget_widget_resource     GET, POST         /api/widget/
doc                        GET               /
health                     GET               /health
restx_doc.static        GET               /swaggerui/<path:filename>
root                       GET               /
specs                      GET               /swagger.json
static                     GET               /static/<path:filename>





As you can see, a number of routes have been generated.

Now, you can run your Flask API using flask run or by running python wsgi.py:

$ python wsgi.py
* Serving Flask app "app" (lazy loading)
* Environment: production
  WARNING: This is a development server. Do not use it in a production deployment.
  Use a production WSGI server instead.
* Debug mode: on
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 304-898-518





While the Flask app is running, open http://127.0.0.1:5000/health within your favourite browser,
and you should be greated with the Swagger documentation for your API.

[image: ../_images/health-endpoint.png]
You can use this UI to try getting all of the Widgets from your API.
Alternatively, you can use the command line to call your api using curl.
Execute the following command:

curl -X GET "http://127.0.0.1:5000/api/widget/" -H "accept: application/json"

This should return a JSON response, containing the entity details for the 3 Widgets currently stored in your SQL Lite database.

$ curl -X GET "http://127.0.0.1:5000/api/widget/" -H "accept: application/json"
[
    {
        "name": "Pizza Slicer",
        "widgetId": 1.0,
        "purpose": "Cut delicious pizza"
    },
    {
        "name": "Rolling Pin",
        "widgetId": 2.0,
        "purpose": "Roll delicious pizza"
    },
    {
        "name": "Pizza Oven",
        "widgetId": 3.0,
        "purpose": "Bake delicious pizza"
    }
]







What Now?

flaskerize has very quickly set up a Flask API for you, including…


	the core API, and all the plumbing to set up routes


	an entity called “Widget”


	code to set up and seed a local database


	tests




In the next section we’ll dig deeper into what happened when you ran fz generate flask-api my_app, the structure of your Flask API, and what each of the generated files do.





          

      

      

    

  

    
      
          
            
  
Step 4: The Structure of your Flask API

In the previous step we created a Flask API using the flaskerize command fz generate flask-api my_app.
This generated a number of file and folders, so let’s take a look at what you have.

The set of files and folders that were created are illustrated below:

.
├── README.md
├── app
│   ├── __init__.py
│   ├── config.py
│   ├── routes.py
│   ├── test
│   │   ├── __init__.py
│   │   └── fixtures.py
│   └── widget
│       ├── __init__.py
│       ├── controller.py
│       ├── interface.py
│       ├── model.py
│       ├── schema.py
│       └── service.py
├── commands
│   ├── __init__.py
│   └── seed_command.py
├── manage.py
├── requirements.txt
└── wsgi.py





Let’s take a closer look at what these files do.







	name

	description





	README.md

	
A markdown file containing instructions for

setting up and running your Flask API






	app

	This folder contains your Flask API code



	commands

	
This folder contains the code that seeds the

database with data






	manage.py

	Exposes the database setup commands



	requirements.txt

	
Contains the list of dependencies. Used for

pip install -r requirements.txt






	wsgi.py

	
Contains code that creates an instance of

your Flask API










Entities

Within the app` folder you can see there's folder called ``widget.
This folder contains code related to the widget entity.

Each entity folder contains:


	controller.py - contains


	interface.py - contains


	model.py - contains


	schema.py - contains


	service.py - contains




You can read more about this structure in the following blog post:

http://alanpryorjr.com/2019-05-20-flask-api-example/

In the next part of this tutorial we will add an additional entity to our api.





          

      

      

    

  

    
      
          
            
  
Step 5: Adding Entities to an API

Over the previous steps we’ve built our Flask API. It already has a widget entity,
but now we’re going to add another entity.

We are going to add a cake entity.

To do this we’re going to use another of flaskerize’s schematics; the entity schematic.

From within the my_app folder we’ll use the following command  to generate our cake entity:

fz generate entity app/cake





This command will generate an entity, called cake, within the app folder.

$ fz generate entity app/cake
Flaskerizing...

Flaskerize job summary:

        Schematic generation successful!
        Full schematic path: flaskerize/schematics/entity



        1 directories created
        11 file(s) created
        0 file(s) deleted
        0 file(s) modified
        0 file(s) unchanged

CREATED: flaskerize-example/my_app/app/cake
CREATED: app/cake/__init__.py
CREATED: app/cake/controller.py
CREATED: app/cake/controller_test.py
CREATED: app/cake/interface.py
CREATED: app/cake/interface_test.py
CREATED: app/cake/model.py
CREATED: app/cake/model_test.py
CREATED: app/cake/schema.py
CREATED: app/cake/schema_test.py
CREATED: app/cake/service.py
CREATED: app/cake/service_test.py





So, what just happened?


	A folder named cake was created under the app folder. Everything related to the cake entity lives within this folder.


	A set of python files relating to the cake entity were created


	A set of tests, relating to the cake entity were also created





Wiring Up the New Cake Entity

If you run the flask routes command, or run python wsgi.py, you won’t see any additional routes
and you won’t see your cake entity appear within the Swagger docs.

This is because there’s some manual wire-up that you now need to do.

First, we need to edit the code within my_app/app/routes.py. Open this file in a text editor and add
the following 2 lines of code (each addition has a comment starting with ADD THE FOLLOWING LINE above it):

def register_routes(api, app, root="api"):
    from app.widget import register_routes as attach_widget

    # ADD THE FOLLOWING LINE to import the register_routes function
    from app.cake import register_routes as attach_cake

    # Add routes
    attach_widget(api, app)

    # ADD THE FOLLOWING LINE to register the routes for the cake entity
    attach_cake(api)





Now, when you run flask route you’ll see the additional routes for your cake entity.
Additionally, you can now see the cake entity appear in the Swagger docs UI:

[image: ../_images/cake-entity-added.png]




          

      

      

    

  

    
      
          
            
  
Step 6: Over To You

Over the last few steps you’ve created a Flask API, and added a new entity to it.

flaskerize has allowed you to quickly and easily generated code, and unit tests, for your API.

There are plenty of additional tasks for you to complete now, such as defining what your entity should look like,
populating the database, writing meaningful tests etc. However, at least you now have a framework in which to
write that code, and as you add more entities you’ll use flaskerize to automate that job.

There are plenty flaskerize features that we’ve not covered here. This Quick Start was designed to give you just
a brief taste of what’s possible.

Good luck, and have fun using flaskerize!


Further Reading


Blog Post “Flask best practices”

http://alanpryorjr.com/2019-05-20-flask-api-example/



The flaskerize README

https://github.com/apryor6/flaskerize/



Schematics Build Into flaskerize

https://github.com/apryor6/flaskerize/tree/master/flaskerize/schematics






          

      

      

    

  

    
      
          
            
  
Contributing to flaskerize


Contributing to the Source Code

TODO: Instructions here



Contributing to the Documentation

TODO: Instructions here





          

      

      

    

  

    
      
          
            
  
Glossary of Terms


	entity

	An entity is a combination of a Marshmallow schema, type-annotated interface, SQLAlchemy model, Flask controller, and CRUD service.
It also contains tests and provides functionality for being registered within an existing Flask application via its register_routes method.
This blog post [http://alanpryorjr.com/2019-05-20-flask-api-example/]  gives more details on entities.



	schematics

	Schematics generate code from parameterized templates.
flaskerize ships with a bunch of built in schematics, listed here [https://github.com/apryor6/flaskerize/tree/master/flaskerize/schematics]








          

      

      

    

  

    
      
          
            

Index



 E
 | S
 


E


  	
      	entity


  





S


  	
      	schematics


  







          

      

      

    

  _static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/comment-bright.png





_images/health-endpoint.png
00 < >| @ @ 127001

[c3

Flaskerific API®®

[ Base RL:
hitp:/127.0.0.1:5000/swaggerjson

Widget singie namespace, single entity

‘ /api/widget/ Create a Single Widget

‘ /api/widget/ Getal Widgets

pi/widget/{widgetId} Delete Single Widget

‘ DELETE

‘ /api/widget/{widgetId} GetSingle Widget

‘m /api/widget/{widgetId} Update Single Widget

Models

Widget + ¢
widgetza nusber
nane string
purpose string






_static/ajax-loader.gif





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          flaskerize
        


        		
          Quick Start Guide
          
            		
              Step 1: Setting up Flaskerize
            


            		
              Step 2: Installing Flaskerize
            


            		
              Step 3: Creating a Flask API
              
                		
                  Following the Instructions from README.md
                


                		
                  Confirm your API is working
                


                		
                  What Now?
                


              


            


            		
              Step 4: The Structure of your Flask API
              
                		
                  Entities
                


              


            


            		
              Step 5: Adding Entities to an API
              
                		
                  Wiring Up the New Cake Entity
                


              


            


            		
              Step 6: Over To You
              
                		
                  Further Reading
                


              


            


          


        


        		
          Contributing to flaskerize
          
            		
              Contributing to the Source Code
            


            		
              Contributing to the Documentation
            


          


        


        		
          Glossary of Terms
        


      


    
  

_images/cake-entity-added.png
e0e < > @ 127001

[9

°a

Flaskerific API®®

[ Base vRL: / ]
hitp:/127.0.0.1:5000/swaggerjson

Widget single namespace, single entiy

Cake Cake information

‘ /api/cake/ Createa Single Cake

‘ /api/cake/ Getall Cakes

pi/cake/{cakeld} Delete Single Cake

‘ DELETE

‘ /api/cake/{cakeId} GetSingle Cake

‘m /api/cake/{cakeId} Update Single Cake

Models






